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Abstract 

 

A three dimensional orthotropic elastic constitutive model with continuum damage and 

cohesive based fracture is implemented for a general polymer matrix composite lamina.  The 

formulation assumes the possibility of distributed (continuum) damage followed by localized 

damage.  The current damage activation functions are simply partially interactive quadratic strain 

criteria.  However, the code structure allows for changes in the functions without extraordinary 

effort.  The material model formulation, implementation, characterization and use cases are 

presented.  
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1. MODEL FORMULATION 
 

The material model outlined in this report follows closely to ones presented [1-4], with 

some notable differences.  First, for simplicity the model assumes a quadratic summation of the 

strain to failure ratios for all damage activation functions.  This is a simplification and can have 

some adverse effects in combined shear compression loading.  However, changes in the 

activation functions would require experimental justification.  For future iterations, the code 

allows for moderately simple changes in this regards.  Second, damage evolution can be 

distributed, commonly associated with matrix damage, and/or localized, commonly associated 

with fiber failure.  While the formulation for these damage mechanisms is similar, many 

distinctions exist as will be described below.  Third, while hardening can be adjusted from linear 

with a damage exponent on the evolution variable, the softening behavior is assumed linear. 

  

1.1. Damage 
 

Elastic damage is assumed the only source of stiffness loss.  Damage variables are 

introduced for each normal and shear direction. The corresponding compliance tensor takes on 

the following form [1]: 

 

 

where the active damage variable is function of the fiber and matrix damage variables as 

 

       (      )(      ) (2) 

 

The damaged (actual) stresses and strains are 
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Since the compliance tensor becomes singular at d = 1, the stiffness tensor is written in closed 

form where the limit of stiffness as d → 1 exists. 
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1.2. Initiation and Failure 
 

A quadratic strain criterion is used for damage initiation and failure.  The damage 

activation threshold is evaluated for tension and compression, matrix and fiber modes and for 

each of the primary material planes [2-4].  The damage activation function for the matrix mode 

in the 11 plane is given for tension and compression as function of the uniaxial (X) and shear (S) 

strengths and the elastic constants as 

 

Tension:     
  √(

   〈   〉

    
 )

 

 (
      
   
 )

 

 (
      
   
 )

 

 (6) 

 

Compression:     
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where 〈 〉 are the Macaulay brackets, defined as  

 

 〈 〉  {
     
     

 (8) 

 

The user provides only damage initiation/failure stresses (  ).  For failure in the fiber 

mode the stress used in the damage activation function must be the effective stress.  For strain 

equivalency, the effective strength in the 11 direction is simply 
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 (9) 

 

where    
 

 is the strain to failure found by solving strain during matrix damage curve at the fiber 

strength.  Therefore, the damage activation function for the fiber mode in the 11 plane is given 

for tension and compression as 
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1.3. Evolution Equations 
 

The evolution of internal state variables resembles those in Maimí et al. [2, 3].  Differing 

from Miami’s formulation, the damage evolution equations are different only for in-plane and 

out of plane for woven composites.  For in-plane tensile and shear loading of a woven composite, 

damage evolution and “hardening” precede failure softening. 
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Begin with the consistency equation for each failure mechanism.  For positive gradient of the 

loading function ( ̇ ) the consistency equation must be satisfied: 

 

  ̇   ̇   ̇    (12) 

 

where Fi and ri are the damage activation function and damage threshold for mode i respectively.  

For damage evolution the Kuhn-Tucker conditions must be met 

 

  ̇    ;      ;    ̇    (13) 

 

Miami assumes the longitudinal and transverse damage evolutions are not coupled.  This is 

debatable and would require experimental verification.  This is simply done by examining the 

transverse strains and thus Poisson effect in a longitudinal loaded specimen with damage.  For 

now this assumption will be incorporated for simplicity. 

 

The damage evolution occurs in the direction normal to the damage surface [4], or 

 

 
  

  
 ̇    (14) 

 

To satisfying this equation, the damage evolution for a single mode is assumed to have the 

following form 

 

  ̇    ̇ (15) 

 

The desired damage evolution can be achieved by choosing the damage growth function as 
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Then the evolution of damage is simply 
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Integrating and applying the boundary conditions, the damage variables are given as 
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Forcing linear hardening/softening when the damage exponent is 1 (n = 1), the above equation 

can be given as 
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where K is the damage modulus for linear hardening/softening and E is the elastic modulus.  

Fiber mode damage is assumed to linearly soften.  Also, if matrix damage precedes fiber 



10 

damage, the elastic modulus is updated with the final matrix damage variable.  For simplicity in 

energy calculations matrix damage is assumed complete when the damage variable reaches the 

monotonic uniaxial maximum achieved at first fiber failure.  

 

1.3.1. Matrix Modes 
 

Matrix damage evolution under tensile loading does not affect the compressive domain; 

conversely, matrix damage evolution under compressive loading does produce a tensile effect.  

The following equations provide the relationship 

 

 

Tensile loading:   ̇     ̇    and  ̇      

 

Compressive loading:   ̇     ̇    and  ̇    {
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(20) 

 

Integrating these equations for time s = 0 to t, produces 
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where i = 1, 2 or 3. 

 

1.3.2. Fiber Modes 
 

Fiber breaks under tensile loading can affect the compressive damage threshold.  This 

evolution of compressive damage under tensile loading is proportional to the tensile damage by 

the coupling factor Ai±.  The effective compressive fiber damage is then 
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where dif+ and dif- are damages caused by tensile and compressive stresses respectively.  Fiber 

breaks under compressive loading directly produces tensile damage.  The following equations 

provide the relationship 
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Integrating these equations for time s = 0 to t, produces 
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         {     
     

{    
 }} (26) 

 

The result is 12 damage evolution variables, 4 for each plane of damage (tension and 

compression for both matrix and fiber modes). 

 

1.4. Loading Scenarios 
 

Matrix mode damage evolution is limited to the fiber mode failure threshold.  However, 

fiber mode damage is possible prior to matrix mode failure when fiber breaks occur in plane 

from a different component of strain.  For example: fiber breaks under uniaxial tension and may 

not cause matrix damage, resulting in fiber breaks effecting subsequent shear loading.  This and 

other important loading scenarios are shown below. 

 

1.4.1. Tension then Compression 
 

Under tensile stress the model predicts matrix damage (“hardening”) followed by fiber 

breaks (softening).  When the load is reversed, the matrix damage strain threshold is unaffected 

by the amount of fiber damage accumulated under tension and does not accumulate compressive 

stiffness loss due to tensile matrix damage.  However, the fiber failure threshold is reduced due 

to tensile fiber breaks.  The amount of tensile to compression fiber coupling is controlled by the 

coefficient A± from Equation (23).  This type of coupling is assumed because tensile stresses 

generate crack planes normal to the loading direction, which may only partially affect the 

compressive response.  Conversely, cracks generated by compressive loads will directly affect 

the tensile response. 

 

 
Figure 1: Axial stress-strain response with various compression-tension coupling 
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1.4.2. Compression then Tension 
 

Under compressive stress the model predicts matrix damage (hardening) followed by fiber 

breaks (softening).  Upon load reversal, no additional matrix damage occurs and the fiber 

damage accumulation continues.  The matrix damage threshold can only increase if the current 

matrix damage is less than tensile matrix damage maximum. 

 
Figure 2: Axial stress-strain response for compression then tensile reversal 

 

1.4.3. Tension then Shear without Fiber Failure 
 

Figure 3 gives the stress versus time for longitudinal tension followed by in-plane shear.  

The shear response is set to continuously harden (shear stresses cannot cause fiber breaks).  The 

matrix damage accumulation under tension affects the shear response. 

 
Figure 3: Axial and shear stress versus time with matrix damage only 
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1.4.4. Tension then Shear with Fiber Failure 
 

Figure 4 gives the stress versus time for longitudinal tension and in-plane shear.  The shear 

response is set to continuously harden (shear stresses cannot cause fiber breaks).  While fiber 

breaks do not accumulate under shear, the response is affected if breaks occur from normal 

stresses.  Both matrix damage and fiber breaks affect the shear response.  Then matrix damage 

under shear continues. 

 

 
Figure 4: Axial and shear stress versus time with matrix and fiber damage 

 

1.4.5. Shear then Tension with Fiber Failure 
 

In this case, the shear response allows for fiber breaks.  Similar to compression then 

tension, both matrix damage and fiber breaks accumulated under shear affect the tensile 

response. 
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Figure 5: Shear and axial stress versus time with matrix and fiber damage 
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2. MATERIAL IDENTIFICATION 
 

2.1. Failure Modes 
 

Matrix mode failure is associated with matrix cracking and transverse yarn failure in 

woven lamina which is marked by non-linearity in the hardening region of the stress strain 

response.  Therefore, matrix mode strength is the initial point of deviation from linear elasticity.  

For materials with response linear to peak stress, the user must specify the matrix mode strength 

to be greater than or equal to the fiber mode strength. 

 

2.2. Fracture Energies 
 

The user specified fracture energies are the total energy associated with material 

bifurcation for a given mode of failure.  The current model formulation does not account for 

mixed mode coupling during fracture. 

Crack band theory assumes that a band of continuously distributed parallel cracks [5] 

releases the same energy as a line crack.  The opening stress to relative displacement (δ) 

relationship is therefore replaced with the presumed identical δ = εl*, where, for our purposes, l* 

is the characteristic length of the finite element and ε is the homogenized strain in the crack 

opening direction. 

In three-dimensional finite element analysis, the crack growth direction is associated with 

the homogenized energy released during material failure.  Therefore, the failure plane must be 

known a priori.  For orthotropic materials, the failure plane is often one of the principal material 

planes.  Therefore, best practice is to use cube hexagonal elements oriented in the material 

system, in which the characteristic length is simply the edge length associated with each 

integration point [2].  Where the crack direction is arbitrary in a plane, the characteristic length 

for a cube element is 

 

    
√   
    

 (27) 

 

where θ is the angle between mesh and the crack direction and AIP is the in-plane area of the 

element associated with each integration point.  Also, the average can be used for an unknown 

crack as [2] 

 

    
 

 
∫       

 
 

 

    √    (28) 

 

For example, a 1x1x1 single integration point element assigned a material oriented +45 degrees 

about the out-of-plane axis would have a characteristic length equal to √   
Each set of internal parameters associated with fracture are calculated independently for 

each mode of failure: monotonic tension/compression and pure shear.  The initialization routine 

determines the softening slope of the stress strain response so the total dissipated fracture energy 

(area under σ-εl* curve) is equal to the user specified fracture energy.  A critical element size 

criterion is evaluated.  The element size (characteristic length l*) must satisfy: 



16 

 

    
  

∫    
  
 

 (29) 

 

for all modes of failure, where    is the strain to fiber mode failure.  For example, a material with 

linear elastic to peak stress has a critical element criterion for axial tension of 

 

    
        

    
  (30) 

 

where      is the fracture energy associated with bifurcation under axial tension. 

 

2.3. Damage Evolution 
 

Damage evolution is user defined only for matrix mode failure.  The evolution of fiber 

damage is controlled by internal parameters using the fracture energies and crack band theory.  

For each matrix failure mode (tension, compression, shear) the evolution equation is generally 

defined as 

     
  
 
 (
  
 
  )

 

  
  (31) 

   

where Km and n are the matrix mode damage modulus and exponent respectively.  The damage 

exponent is intended to add flexibility in the material response.  For shear damage, Km is defined 

in terms of classical (engineering) shear strain γ.  After the fiber mode strength is exceeded, the 

material is linearly softened.  Note matrix mode damage is zero for Km = E or n = 0.  Figure 6 

shows the effects of n for an arbitrary shear response. 

 
Figure 6: Shear stress-strain response with various damage exponents 
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2.4. Rate Dependency 
 

Purely empirical strain rate dependence is included.  Rate dependencies use the following 

relationship [6]: 

 

    ̅ (       
 ̇

  ̇
) (32) 

 

where    and  ̅ are the rate effected and reference material properties respectively,    is the rate 

coefficient and   ̇ is the reference strain rate used to determine  ̅.  An independent rate equation 

is utilized for each elastic stiffness, matrix mode strength and fiber mode strength.  Rate is 

assumed to affect tension and compression equally. 

 

 
Figure 7: Stress-strain response at various strain rates 

 

 

2.5. Control Fracture 
 

The control fracture methodology in Sierra is implemented to ensure timestep 

independence in implicit analysis.  Control fracture iteratively kills elements exhibiting the 

highest measure of failure then recalculates.  Internally, the material model with the control 

fracture methodology utilizes failure flags to designate states of failure.  For implicit analysis, the 

states are 0, 1, 2, 3, and 4 corresponding to not failed, exceeds failure criteria, chosen to fail, 

decaying and fully decayed respectively. 

The material model provides the option to utilize the control fracture method in two 

different ways.  The first (default) method utilizes control fracture for the first fiber mode failure 

detected then remains in the decaying region until all fiber modes are complete.  The basis for 

this method is to allow elements to behave as if fibers are still attached in the direction transverse 
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to the crack.  The second method reduces all stresses to zero when a single fiber mode has 

completed.  This essentially kills the element i.e.  

 

    
 
    (   

 
)    for       

 
     (33) 

 

Upon complete failure (   (   )     )) the failure flag is set to 4 (complete decay). 

In order to demonstrate the effect of the control fracture method a simple notched plate 

under tension is simulated.  Distributed (matrix) damage accumulates along the likely crack path 

and appears as a cloud.  Conversely, the fiber failure is iteratively solved for each timestep using 

control fracture and, therefore, follows a single element thick crack path.  Contour plots for this 

simulation are shown in Figure 8. 

 

(a)  

 

(b)  

 
Figure 8: Tensile loaded notched plate with (a) matrix and (b) fiber damage 

 

 

2.6. Element Death Considerations 
 

While not necessary for small deformations, element death can be used in conjunction with 

this material model in order to simulate crack growth.  If an element is determined dead, material 
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connectivity is ignored.  For many orthotropic materials the crack plane is assumed one of the 

primary material directions.  In this case, element death is optional.  If the element is not killed 

upon directional failure, the stiffness remains in the intact directions. 

While the crack flag is triggered under compressive stresses, limiting the damage with the 

maximum compressive damage parameter (< 1.0), results in an element that never fails.  In this 

case a maximum compressive strain criterion is recommended for element death in order to 

prevent timestep and element quality issues. 

The most robust death criteria that ensures proper energy dissipation and mesh quality is 

simply based on the components of damage, or        , where dij are defined in Equation (2) 

as the total active damages and the state variable vector name is DAMAGE.  
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3. EXAMPLE PROBLEMS 
 

3.1. Ballistic Penetration 
 

A high velocity penetration analysis is conducted with a four layer eight harness satin 

weave (8HS) carbon fiber reinforced polymer (CFRP) 50mm x 50mm unsupported plate.  The 

impactor is a 4.5 mm diameter sphere traveling at 500 m/s.  The material is a four layer carbon 

fiber laminate.  The material properties are similar to those in the subsequent section, but are 

used for demonstrative purposed only.  The change in average kinetic energy of the projectile is 

used as metric for mesh convergence. 

While the material model allows for cohesive like out-of-plane failure, it is assumed 

delamination is the dominate failure mechanism.  From various iterations of model types, 

cohesive zone elements with explicitly defined lamina to lamina contact are the best way to 

model interlaminar failure.  More details on cohesive zone elements and contact are given in 

Appendix B.  The laminas are modeled as individual blocks separated by the zero-volume 

element and initially collocated side sets or block surfaces are given a contact definition.  This 

method does not rely on a penetration multiplier, which can cause convergence issues and tends 

to allow penetration after shear mode failure.  Figure 9a shows the results when a penetration 

stiffness multiplier is used and Figure 9b shows the result of using contact between layers. 

 

(a)   (b)  
 

Figure 9: Penetration simulations with and without interlaminar contact 

 

In order to achieve a mesh convergent solution, the characteristic length of the failure 

model is modified based on estimated fracture area associated with mesh size.  Figure 10 shows 

the total kinetic energy of the penetrator versus simulation time for four mesh sizes each with an 

edge length reduction factor of 2.  While the time history is slightly different for finest mesh, the 

final change of kinetic energy appears mesh convergent.  Note, the coarsest mesh demonstrated a 

punch failure while the three finer meshes showed a qualitatively similar petal type failure (see 

Figure 11). 
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Figure 10: Total kinetic energy of the penetrator versus simulation time for various mesh 

sizes (characteristic lengths) 

 

 

 
 
Figure 11: Petal type penetration failure with in plane damage, shown without penetrator 
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3.2. Low-Velocity Impact 
 

This validation effort is documented in an accompanying SAND report.  Model description 

and pertinent results are presented here.  The dimensions for the test specimen are given in Table 

1.  For the textile architecture used in this study, one ply is denoted as (0/90) representing the 

warp and fill directions in the 0° and 90° directions, respectively.  Therefore, the laminates used 

in this investigation were composed of 12 plies of textile material with the warp direction 

oriented along the specimen’s length.  The indenter has a 19 mm diameter cylindrical tup with a 

mass of 5.42 kg.  The impact energy for this demonstration is approximately 50J.  

 
Table 1: Typical dimensions for impact specimens 

Width (mm) Length (mm) Thickness (mm) Stack Sequence 

102 155 4.49 [(0/90)6]s 

 

The CFRP material properties are measured, calibrated to experiments, calculated with 

micromechanics, obtained from literature or estimated using engineering judgment.  The values 

used for this example are shown in Table 2.  Standard deviations are given in parentheses and 

bounds of uniform distributions are shown as ±. 

 
Table 2: CFRP material properties 

Identification Values Identification Values 

E11 (GPa) 

E22 (GPa) 

E33 (GPa) 

ν12 

ν23 

ν13 

G12 (GPa) 

G23 (GPa) 

G13 (GPa) 

GI11 

GI22 

GI33 

GII12 

GII23 

GII13 

63.9 (2.4) 

62.7 (3.8) 

8.19 ± 0.40 

0.048 (0.018) 

0.399 ± 0.018 

0.400 ± 0.017 

3.44 (0.058) 

3.27 ± 0.27 

3.25 ± 0.26 

80 ± 20 

80 ± 20 

2.6 ± 2.5 

12 ± 1.2 

10 ± 1.0 

10 ± 1.0 

F1T (MPa) 

F1C (MPa) 

F2T (MPa) 

F2C (MPa) 

F3T (MPa) 

F3C (MPa) 

S12M (MPa) 

S12F (MPa) 

S23M (MPa) 

S23F (MPa) 

S13M (MPa) 

S13F (MPa) 

K12m (MPa) 

K23m (MPa) 

K13m (MPa) 

769 (37) 

-816 (69) 

823 (26) 

-816 (69) 

56.2 ± 13 

-56.2 ± 13 

48.4 (0.84) 

77.3 (1.1) 

32.4 ± 7.4 

65.5 ± 12 

32.4 ± 7.4 

65.5 ± 12 

152 (10.1) 

152 ± 15.2 

152 ± 15.2 

 

The finite element mesh is shown in Figure 12.  While many simulations where conducted 

for validation assessment, a single run is shown for demonstrative purposes.  The load time 

history is shown in Figure 13.  The model and experimental results are smoothed and filtered 

respectively to remove high frequency noise.  The out-of-plane shear damage and delamination 

contours are shown for the warp cross-section along with a comparison computed tomography 

(CT) image from the experiments in Figure 14. 
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Figure 12: Full mesh of simulated low velocity impact experiment (note: x-plane 
symmetry is utilized) 

 

 

Figure 13: Force versus time from simulation and experiments 
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(a)   

(b)  
 

Figure 14: The post impact cross-section of (a) CT scanned specimen and (b) model 
prediction of out-of-plane damage and delamination.  Note, the scan is taken from a 

material with slightly different matrix but otherwise identical 
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4. CONCLUSIONS 
 

A general phenomenological orthotropic damage and failure material model has been 

detailed and user guidance, material characterization and examples are provided.  The resulting 

constitutive model is relevant for many composite materials.  In addition, the general framework 

and orthotropic orientation capabilities provide adaptability for future damage evolution/failure 

models.   
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APPENDIX A:  SIERRA MATERIAL MODEL SYNTAX 
 

Elastic Orthotropic Continuous Damage Mechanics Material Model: 

 
BEGIN MATERIAL <string>mat_name 

DENSITY = <real>density_value 

BIOTS COEFFICIENT = <real>biots_value 

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_FAIL 

# General parameters (any two are required) 

YOUNGS MODULUS    = <real>youngs_modulus 

POISSONS RATIO    = <real>poissons_ratio 

SHEAR MODULUS     = <real>shear_modulus 

BULK MODULUS      = <real>bulk_modulus 

LAMBDA            = <real>lambda 

# Required parameters 

E11               = <real>e11 

E22               = <real>e22 

E33               = <real>e33 

NU12              = <real>nu12 

NU13              = <real>nu13 

NU23              = <real>nu23 

G12               = <real>g12 

G13               = <real>g13 

G23               = <real>g23 

# Normal thresholds 

TENSILE_MATRIX_STRENGTH_11     = <real>f1mp 

COMPRESSIVE_MATRIX_STRENGTH_11 = <real>f1mn 

TENSILE_FIBER_STRENGTH_11      = <real>f1fp 

COMPRESSIVE_FIBER_STRENGTH_11  = <real>f1fn 

TENSILE_MATRIX_STRENGTH_22     = <real>f2mp 

COMPRESSIVE_MATRIX_STRENGTH_22 = <real>f2mn 

TENSILE_FIBER_STRENGTH_22      = <real>f2fp 

COMPRESSIVE_FIBER_STRENGTH_22  = <real>f2fn 

TENSILE_MATRIX_STRENGTH_33     = <real>f3mp 

COMPRESSIVE_MATRIX_STRENGTH_33 = <real>f3mn 

TENSILE_FIBER_STRENGTH_33      = <real>f3fp 

COMPRESSIVE_FIBER_STRENGTH_33  = <real>f3fn 

# Shear thresholds 

SHEAR_MATRIX_STRENGTH_12       = <real>s12m 

SHEAR_FIBER_STRENGTH_12        = <real>s12f 

SHEAR_MATRIX_STRENGTH_23       = <real>s23m 

SHEAR_FIBER_STRENGTH_23        = <real>s23f 

SHEAR_MATRIX_STRENGTH_13       = <real>s13m 

SHEAR_FIBER_STRENGTH_13        = <real>s13f 

# Fracture parameters 

TENSILE_FRACTURE_ENERGY_11     = <real>gi1p 

COMPRESSIVE_FRACTURE_ENERGY_11 = <real>gi1n 
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TENSILE_FRACTURE_ENERGY_22     = <real>gi2p 

COMPRESSIVE_FRACTURE_ENERGY_22 = <real>gi2n 

TENSILE_FRACTURE_ENERGY_33     = <real>gi3p 

COMPRESSIVE_FRACTURE_ENERGY_33 = <real>gi3n 

SHEAR_FRACTURE_ENERGY_12       = <real>gii12 

SHEAR_FRACTURE_ENERGY_23       = <real>gii23 

SHEAR_FRACTURE_ENERGY_13       = <real>gii13 

CHARACTERISTIC_LENGTH          = <real>l_star 

#Damage evolution parameters 

MAXIMUM_COMPRESSIVE_DAMAGE_11  = <real>dmax1n 

MAXIMUM_COMPRESSIVE_DAMAGE_22  = <real>dmax2n 

MAXIMUM_COMPRESSIVE_DAMAGE_33  = <real>dmax3n 

COMPRESSION_COUPLING_FACTOR_11 = <real>a1pn 

COMPRESSION_COUPLING_FACTOR_22 = <real>a2pn 

COMPRESSION_COUPLING_FACTOR_33 = <real>a3pn 

TENSILE_DAMAGE_MODULUS_11      = <real>k1p 

COMPRESSIVE_DAMAGE_MODULUS_11  = <real>k1n 

TENSILE_DAMAGE_MODULUS_22      = <real>k2p 

COMPRESSIVE_DAMAGE_MODULUS_22  = <real>k2n 

TENSILE_DAMAGE_MODULUS_33      = <real>k3p 

COMPRESSIVE_DAMAGE_MODULUS_33  = <real>k3n 

SHEAR_DAMAGE_MODULUS_12        = <real>k12 

SHEAR_DAMAGE_MODULUS_23        = <real>k23 

SHEAR_DAMAGE_MODULUS_13        = <real>k12 

HARDENING_EXPONENT_11          = <real>n11 

HARDENING_EXPONENT_22          = <real>n22 

HARDENING_EXPONENT_33          = <real>n33 

HARDENING_EXPONENT_12          = <real>n12 

HARDENING_EXPONENT_23          = <real>n23 

HARDENING_EXPONENT_13          = <real>n13 

# Strain rate dependent parameters 

REFERENCE_STRAIN_RATE          = <real>epsdot0 

ELASTIC_RATE_COEFFICIENT_11    = <real>ce11 

ELASTIC_RATE_COEFFICIENT_22    = <real>ce22 

ELASTIC_RATE_COEFFICIENT_33    = <real>ce33 

ELASTIC_RATE_COEFFICIENT_12    = <real>ce12 

ELASTIC_RATE_COEFFICIENT_23    = <real>ce23 

ELASTIC_RATE_COEFFICIENT_13    = <real>ce13 

FIBER_STRENGTH_RATE_COEFFICIENT_11  = <real>cf11 

FIBER_STRENGTH_RATE_COEFFICIENT_22  = <real>cf22 

FIBER_STRENGTH_RATE_COEFFICIENT_33  = <real>cf33 

FIBER_STRENGTH_RATE_COEFFICIENT_12  = <real>cf12 

FIBER_STRENGTH_RATE_COEFFICIENT_23  = <real>cf23 

FIBER_STRENGTH_RATE_COEFFICIENT_13  = <real>cf13 

MATRIX_STRENGTH_RATE_COEFFICIENT_11 = <real>cm11 

MATRIX_STRENGTH_RATE_COEFFICIENT_22 = <real>cm22 

MATRIX_STRENGTH_RATE_COEFFICIENT_33 = <real>cm33 
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MATRIX_STRENGTH_RATE_COEFFICIENT_12 = <real>cm12 

MATRIX_STRENGTH_RATE_COEFFICIENT_23 = <real>cm23 

MATRIX_STRENGTH_RATE_COEFFICIENT_13 = <real>cm13 

# Coefficient of thermal expansion functions 

THERMAL_STRAIN_11_FUNCTION = <string>cte11_function_name 

THERMAL_STRAIN_22_FUNCTION = <string>cte22_function_name 

THERMAL_STRAIN_33_FUNCTION = <string>cte33_function_name 

# Temperature dependent property functions 

E11_FUNCTION  = <string>e11_function_name 

E22_FUNCTION  = <string>e22_function_name 

E33_FUNCTION  = <string>e33_function_name 

NU12_FUNCTION = <string>nu12_function_name 

NU23_FUNCTION = <string>nu23_function_name 

NU13_FUNCTION = <string>nu13_function_name 

G12_FUNCTION  = <string>g12_function_name 

G23_FUNCTION  = <string>g23_function_name 

G13_FUNCTION  = <string>g13_function_name 

# Orientation 

ANGLE_1_ABSCISSA  = <real>angle_1_abscissa 

ANGLE_2_ABSCISSA  = <real>angle_2_abscissa 

ANGLE_3_ABSCISSA  = <real>angle_3_abscissa 

ROTATION_AXIS_1   = <real>rotation_axis_1 

ROTATION_AXIS_2   = <real>rotation_axis_2 

ROTATION_AXIS_3   = <real>rotation_axis_3 

ANGLE_1_FUNCTION  = <string>angle_1_function_name 

ANGLE_2_FUNCTION  = <string>angle_2_function_name 

ANGLE_3_FUNCTION  = <string>angle_3_function_name 

COORDINATE SYSTEM = <string>coordinate_system_name 

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_FAIL] 
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APPENDIX B:  COMPRESSION EFFECTED TRACTION SEPARATION 
LAW FOR COHESIVE ZONE MODELING 

 

Cohesive elements do not behave well under out-of-plane compressive loads.  A common 

practice is to apply an interpenetration stiffness.  This practice often produces unrealistic results 

under high levels of compression, such as are found in penetration analysis.  An alternative is to 

define contact between adjacent faces making up the cohesive element.  The contact algorithm 

then calculates the necessary forces to prevent interpenetration.  This method has an additional 

benefit of friction.  Utilizing friction between faces essentially results in a simple compression 

dependent cohesive model similar to [7].  A simple mixed mode traction separation law detailed 

in [8] is used for delamination prediction.  Therefore, for a constant normal stress (  ), the 

effective peak traction and toughness are simply 

 

       〈   〉 (34) 

   

    
          〈   〉 (35) 

   

where   is the frictional coefficient and     is the critical tangential separation.  Since after 

element failure a frictional interface is assumed, the current model cannot differentiate surfaces 

enclosing a failed element, i.e. a single friction coefficient controls both CZ traction and 

frictional forces on the crack faces.  The model form is known to be in error in this regard.  In 

order to remedy this deficiency a novel approach is proposed. 

While not utilized in any of the mentioned analysis, the following method for compression 

dependent traction separation is proposed.  A nodal variable dependent coulomb friction law is 

used to define the interaction between parallel faces separated by a cohesive zone element.  A 

user subroutine is used to calculate the instantaneous friction coefficient for a given compressive 

stress and tangential displacement.  The variable inputs are the contact normal force (Fn) and a 

special monotonic tangential separation parameter (δ) added to the traction-separation material 

model. 
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where σn = -Fn/An and An is the area associated with the nodes in contact.  
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Figure 15 shows the effect of load angle for displacement control traction.  Figure 16 

provides the related effective toughness.  Figure 17 shows the shape of the friction coefficient 

curve for nearly zero and  a constant compressive stress.  Similarly, Figure 18 shows the traction 

separation laws for these conditions. 

 

 
Figure 15: Traction separation laws for various load angles.  The compressive stress is 

applied as σn=τcot(ϕ) 

 
 

Figure 16: Effective energy release rate versus load angle (ϕ = π/2 is pure shear) 
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Figure 17: Example of the applied friction coefficient versus λ for constant compressive 

stresses. Negative zero refers to a negligibly small compressive force. 

 

 
 

Figure 18: Examples of traction separation laws for a constant compressive stresses   
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